

Executive Summary

Current Al Adoption

76% actively use AI in at least one discovery function. Top areas: Target ID/Validation (72%), Virtual Screening (68%), Preclinical/Tox modeling (61%), Lead Optimization (54%), Experimental Design (38%).

Realized & Projected Impact

Current: 10–22% faster early discovery. By 2030: 30–50% shorter discovery/preclinical timelines; up to 45% cost savings in hit identification.

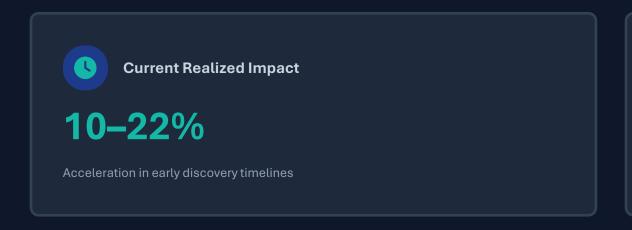
Maturity Levels

22% PoC only, 40% early implementation, 26% scaling across workflows, 6% fully integrated. Only ~1 in 3 organizations are scaling beyond pilots.

Key Barriers to Scaling

Data fragmentation (4.6/5), regulatory uncertainty (4.2/5), talent gaps (4.1/5), workflow integration (3.8/5), trust in Al design (3.5/5).

Investment Priorities

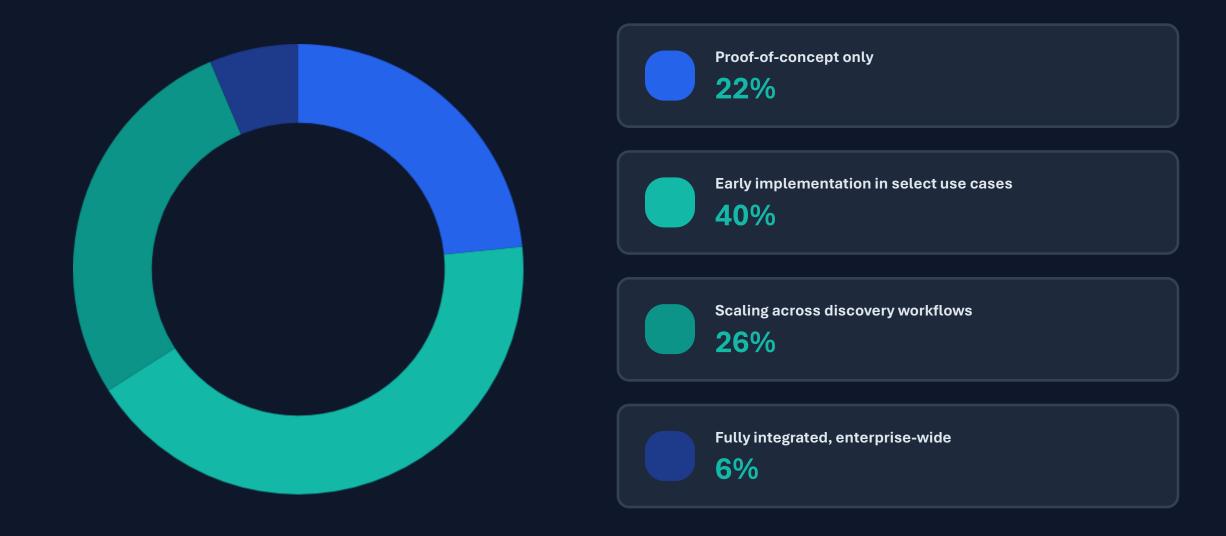

Shifting toward AI-ready data platforms, generative AI for chemistry/biology, ML-based decision support, partnerships with AI-native discovery companies, and workforce upskilling.

Current Al Adoption Across Discovery

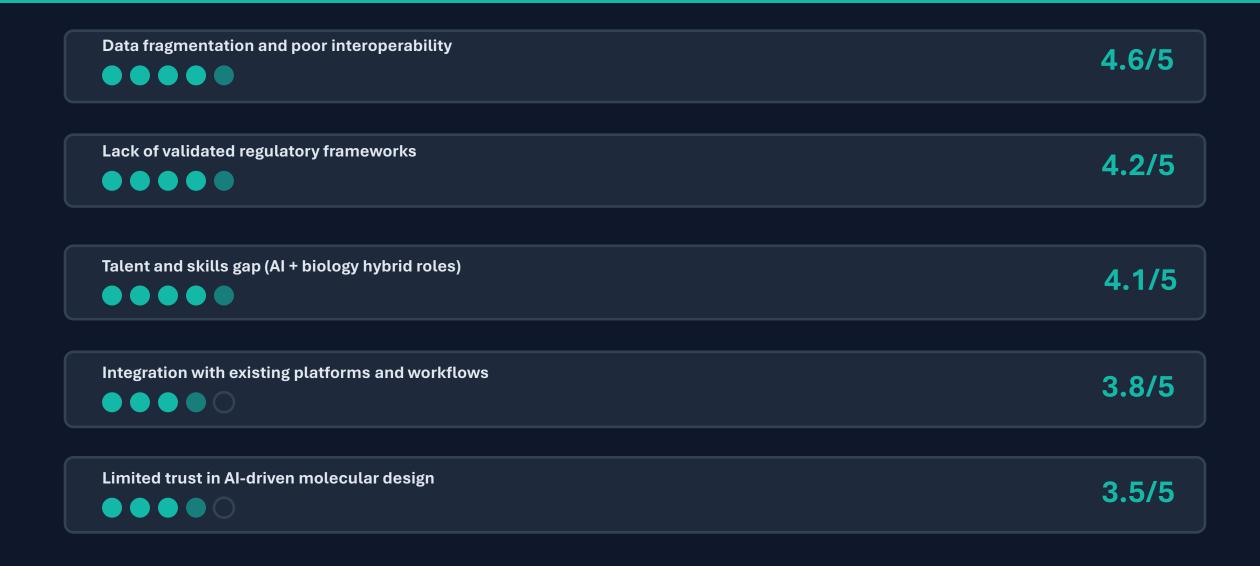
AI USE CASE	% OF ORGANIZATIONS
Target Identification & Validation	72 %
Hit Discovery / Virtual Screening	68%
Early Preclinical Modeling & Toxicity Prediction	61%
Lead Optimization (e.g., generative ML models)	54%
Experimental Design & Automation	38%

Measured and Expected Impact

Timeline Reduction Potential


Cost Reduction Potential by Stage

Hit Identification	
Current:	15–25%
V	
Ву 2030:	35–45%


Lead Optimization	
Current:	10–20%
V	
Ву 2030:	25–40%

Toxicology & Preclinical Experiments		
Current:	5–15%	
V		
Ву 2030:	20–35%	

Maturity of Al Adoption

Key Barriers to Scaling AI in Drug Discovery

Investment and Capability Focus

	Currently Investing	Planned in Next 24 Months
AI-Ready Unified Data Platforms	58%	76%
Generative AI for Chemistry/Biology	46%	71%
Automated / ML-Based Decision Support	34%	62%
Partnerships with Al-native discovery companies	52 %	69%
Workforce Upskilling (Data + Bio R&D roles)	29%	57%

Future Outlook by 2030

	Faster identification of novel targets	84%
	Higher probability of clinical success	72%
	Algorithm-driven molecular design replacing traditional screening	69%
	Significant reduction in lab-intensive experiments	61%
✓	Personalized/precision drug design	58%

Quantitative Outlook at a Glance

Active Al Adoption

68%

Organizations actively applying AI in chemical/biological design workflows

0

Timeline Reduction by 2030

30-50%

Expected reduction in discovery timelines across the industry

Hit Identification Savings

Up to 45%

Cost savings projected in hit identification by 2030

Lead Optimization Savings

25-40%

Cost reduction expected in lead optimization workflows

Al impact is strongest in early discovery and preclinical modeling, with higher probability of success entering clinical phases

Final Insight

Al is shifting from experimental to essential in pharma and biotech R&D

Scalable, Interoperable Data
Infrastructure

Regulatory Alignment and Validated Frameworks

Hybrid Talent: AI × Biology × Translational Science

Call to Action

Invest now to operationalize AI across discovery and preclinical workflows. Organizations that build these capabilities today will define the next generation of drug discovery competitiveness.

